- 7. A tunable voltage isolation ground to ground ESD clamp integrated circuit, the clamp comprising:
 - a dual-direction silicon controlled rectifier formed from transistors and resistors in a substrate of an integrated circuit between a first ground and a second ground; and
 - trigger elements formed to provided a trigger current to the dual-direction silicon controlled rectifier when a desired voltage between the first and second grounds is reached.
- 8. The clamp of claim 7, wherein the trigger elements are formed from at least one or more diodes and a one or more zener diodes.
- **9**. The clamp of claim **7**, wherein in the dual-direction silicon controlled rectifier further comprises:
 - a first silicon controlled rectifier (SCR) including,
 - a first well of the first conductivity type formed in a second well of the second conductivity type;
 - a first region of a second conductivity type with high dopant concentration formed in the first well of the first conductivity type, and
 - a third well of the first conductivity type formed a select distance from the first well of the first conductivity type in the second well of the second conductivity type; and
 - a second SCR including,
 - the third well of the first conductivity type,
 - a second region of the second conductivity type with high dopant concentrations formed in the third well of the first conductivity type, and
 - the first well of the first conductivity type.
- 10. The clamp of claim 9, wherein the trigger elements further comprise:
 - a first overlapping region including first section within the first well having a high dopant concentration of the first type and a second section outside the first well having a high dopant concentration of the second type; and
 - a second overlapping region including first section within the third well having a high dopant concentration of the first type and a second section outside the third well having a high dopant concentration of the second type.
- 11. The method of claim 9, wherein spacing of the first and third wells, and regions define at least one of a holding voltage, a dynamic resistance and trigger current.
- 12. The clamp of claim 9 wherein the dual-direction silicon controlled rectifier further comprises:
 - a first transistor of a first type;
 - a second transistor of a second type, the second transistor having an emitter coupled to the first ground and a collector coupled to a base of the first transistor, the second transistor further having a base coupled to the second ground across a first of the trigger elements, the base of the second transistor further coupled to a first emitter of the first transistor; and
 - a third transistor of the second type, having an emitter coupled to the second ground and a collector coupled to the base of the first transistor, the third transistor further having a base coupled to the first ground across a second of the trigger elements, the base of the third transistor further coupled to a second emitter of the first transistor.
- 13. The clamp of claim 12, wherein each of the second and third transistors further comprises:
 - a first well of a first conductivity type formed in a second well of a second conductivity type, wherein the second well is formed in a substrate of the first conductivity type.

- 14. The clamp of claim 12, further comprising:
- a first resistor coupled between the first ground and the base of the second transistor; and
- a second resistor coupled between the second ground and the base of the third transistor.
- 15. An electronic device comprising:
- a switching regulator including:
 - at least one switch,
 - a regulator including control functions configured to operate the at least one switch,
 - an inductor coupled between the one switch and an output node,
 - a feed back loop coupled between the output node and the regulator, wherein the regulator switches the at least one switch at a rate based at least in part on the feedback loop;
 - a first ground coupled to the control function, and
 - a second ground coupled to the at least one switch; and
- a tunable voltage isolation ground to ground ESD clamp coupled between the first and second grounds, the clamp including,
 - a dual-direction silicon controlled rectifier (SCR) coupled between the first and second grounds; and
 - trigger elements coupled between the first and second grounds, the trigger elements configured to provided a trigger current to the dual-direction silicon controlled rectifier when a desired voltage between the first and second grounds is reached.
- **16**. The electronic device of claim **15**, wherein the trigger elements of the clamp further comprise at least one of one or more diodes and a one or more zener diodes.
- 17. The electronic device of claim 15, wherein the dual-direction SCR further comprises:
 - a first transistor of a first type;
 - a second transistor of a second type, the second transistor having an emitter coupled to the first ground and a collector coupled to a base of the first transistor, the second transistor further having a base coupled to the second ground across a first of the trigger elements, the base of the second transistor further coupled to a first emitter of the first transistor; and
 - a third transistor of the second type, having an emitter coupled to the second ground and a collector coupled to the base of the first transistor, the third transistor further having a base coupled to the first ground across a second of the trigger elements, the base of the third transistor further coupled to a second emitter of the first transistor.
- **18**. The electronic device of claim **17**, wherein the clamp further comprises:
 - a first resistor coupled between the first ground and the base of the second transistor; and
 - a second resistor coupled between the second ground and the base of the third transistor.
- 19. The electronic device of claim 15, wherein in the dualdirection silicon controlled rectifier of the clamp further comprises:
 - a first SCR including,
 - a first well of the first conductivity type formed in a second well of the second conductivity type;
 - a first region of a second conductivity type with high dopant concentration formed in the first well of the first conductivity type, and